Homeostatic Plasticity and STDP: Keeping a Neuron's Cool in a Fluctuating World
نویسندگان
چکیده
Spike-timing-dependent plasticity (STDP) offers a powerful means of forming and modifying neural circuits. Experimental and theoretical studies have demonstrated its potential usefulness for functions as varied as cortical map development, sharpening of sensory receptive fields, working memory, and associative learning. Even so, it is unlikely that STDP works alone. Unless changes in synaptic strength are coordinated across multiple synapses and with other neuronal properties, it is difficult to maintain the stability and functionality of neural circuits. Moreover, there are certain features of early postnatal development (e.g., rapid changes in sensory input) that threaten neural circuit stability in ways that STDP may not be well placed to counter. These considerations have led researchers to investigate additional types of plasticity, complementary to STDP, that may serve to constrain synaptic weights and/or neuronal firing. These are collectively known as "homeostatic plasticity" and include schemes that control the total synaptic strength of a neuron, that modulate its intrinsic excitability as a function of average activity, or that make the ability of synapses to undergo Hebbian modification depend upon their history of use. In this article, we will review the experimental evidence for homeostatic forms of plasticity and consider how they might interact with STDP during development, and learning and memory.
منابع مشابه
Reducing the Variability of Neural Responses: A Computational Theory of Spike-Timing-Dependent Plasticity
Experimental studies have observed synaptic potentiation when a presynaptic neuron fires shortly before a postsynaptic neuron and synaptic depression when the presynaptic neuron fires shortly after. The dependence of synaptic modulation on the precise timing of the two action potentials is known as spike-timing dependent plasticity (STDP). We derive STDP from a simple computational principle: s...
متن کاملSoftware ENgineering A computational theory of spike-timing dependent plasticity: achieving robust neural responses via conditional entropy minimization
Experimental studies have observed synaptic potentiation when a presynaptic neuron fires shortly before a postsynaptic neuron, and synaptic depression when the presynaptic neuron fires shortly after. The dependence of synaptic modulation on the precise timing of the two action potentials is known as spike-timing dependent plasticity or STDP. We derive STDP from a simple computational principle:...
متن کاملCooperation of spike timing-dependent and heterosynaptic plasticities in neural networks: a Fokker-Planck approach.
It is believed that both Hebbian and homeostatic mechanisms are essential in neural learning. While Hebbian plasticity selectively modifies synaptic connectivity according to activity experienced, homeostatic plasticity constrains this change so that neural activity is always within reasonable physiological limits. Recent experiments reveal spike timing-dependent plasticity (STDP) as a new type...
متن کاملSpike timing dependent plasticity: mechanisms, significance, and controversies
Long-term modification of synaptic strength is one of the basic mechanisms of memory formation and activity-dependent refinement of neural circuits. This idea was purposed by Hebb to provide a basis for the formation of a cell assembly. Repetitive correlated activity of pre-synaptic and post-synaptic neurons can induce long-lasting synaptic strength modification, the direction and extent of whi...
متن کاملSpike timing dependent plasticity: mechanisms, significance, and controversies
Long-term modification of synaptic strength is one of the basic mechanisms of memory formation and activity-dependent refinement of neural circuits. This idea was purposed by Hebb to provide a basis for the formation of a cell assembly. Repetitive correlated activity of pre-synaptic and post-synaptic neurons can induce long-lasting synaptic strength modification, the direction and extent of whi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 2 شماره
صفحات -
تاریخ انتشار 2010